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EXPECTED TIME TO SEROCONVERSION USING  
TWO SOURCES OF HIV TRANSMISSION  

– SHOCK MODEL APPROACH

INTRODUCTION

The occurrence of AIDS epidemics are amongst the 
forefront public health changes that the world has 
faced in recent past. Millions of people died of HIV 
infection during the last three decades. In the study of 
HIV infection the different modes of transmission of 
HIV is an interesting concept of study.

There are four different modes of transmission and 
they are:

Homo (or) Hetero sexual contacts1.	
Sharing unsterile needles2.	
Transmission of contaminated blood product3.	
From mother to baby in the fetus4.	

Among the four models of transmission, sexual 
contact is the most important mode of transmission of 

HIV. Sexual contacts and Needle sharing are the two 
source of HIV infection. The threshold of any individual 
is a random variable. If the total damage crosses a 
threshold level Y which itself is a random variable, the 
seroconversion occurs and a person is recognized as 
infection. The inter-arrival times between successive 
contacts, the sequence of damage and the threshold are 
mutually independent. Essary et al. (1973), consider a 
component, which can be either an engineering system 
or a bio-component, subjected to shocks occurring 
randomly in time. 

One can see for more detail related to the study of 
expected time through shock model in Palanivel et al.  
(2009),  threshold  level using Multisource  of  HIV  
Transmission  by  Pandiyan  et  al. (2010). Rajivgandhi 
et al. (2010) and Ramajayam and Elangovan (2015)  
discussed  about  the  expected  time  to  cross  the  
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Abstract

The spread of the HIV infection has created on pandemic situation all over the world. It has become 
necessary to have the combined efforts of medical personnel social workers mathematicians and 
Statisticians to study the different aspects of this infection and its spread. One of the interesting aspects 
of study is to estimate the likely time at which on infected persons becomes seropositive it is in this 
connection the Antigenic Diversity Threshold is considered. In this paper two components   namely sexual 
contacts and needle sharing are the modes of transmission. Numerical examples are given to illustrate 
various aspects of the model considered for the expected time and variance to seroconversion. 
Keywords: Antigenic Diversity Threshold, Anti Retroviral Therapy, HIV Infected, Seroconversion.
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threshold  level  of  the  component. Mathematical model 
is obtained for the expected time of breakdown point 
to reach the threshold level through three parameter 
Weibull distribution. Numerical illustrations are 
provided for different combinations of the parameters 
in the distribution of the random variables used in this 
model.

Assumptions of the Models

A person is exposed to HIV infection. At every i.	
epoch of contact with an infected there is some 
contribution to the antigenic diversity.
Anti Retroviral Therapy is administered to the ii.	
infected.
There is a particular level of antigenic diversity iii.	
of the invading, and it is called the antigenic 
diversity threshold. If antigenic diversity crosses 
this threshold the seroconversion takes place.
The interarrival times between the successive iv.	
contacts are random variables which are identically 
independently distributed.

Notations

Xi: a continuous    random variable denoting the 
amount of damage/depletion caused to the system 
due to the exit of persons on the ith occasion of policy 
announcement, i=1,2,3,... k and X'i S are i.i.d and Xi 
= X for all i.
Y1,Y2: continuous random variable denoting the 
threshold levels for the two grades which follows three 
parameter Weibull distribution.
g(.): The probability density functions (p.d.f) of 
Xi

gk(.): The k- fold convolution of g(.)  i.e., p.d.f. of 

1

k

i iX
=∑  

g*(.): Laplace transform of g(.)
gk*(.): Laplace transform of gk(.)
h(.): The probability density function of random 
threshold level which has three parameter Weibull 
distribution and H(.) is the corresponding Probability 
generating functions.
U: a continuous random variable denoting the inter-
arrival times between decision epochs. 
f(.) : p.d.f. of random variable U with corresponding 
Probability Generating function.

Vk(t): Fk(t)– Fk+1(t)
Fk(t) :Probability that there are exactly ‘k’ policies 
decisions in (0,t)
S(.): The survivor function i.e. P(T >t)
1 – S(t) = L(t)

Model Description and Results

Any component exposed to shocks which cause damage 
to the immune system is likely to fail when the total 
cumulated damage exceed a level called threshold.
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In general, assuming that the threshold Y follows a 
three parameter Weibull distribution with parameter σ, 
µ it can be proved that
Transfer of system from to Y1, Y2 is also possible. We 
have the breakdown of the component is at Y = max 
(Y1, Y2).
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Now that Y1 and Y2 follow three parameter Weibull 
distribution with parameter σ1, σ2, µ1, µ2
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Survival analysis is a class of statistical methods 

for studying the occurrence and timing of events. The 
survival function S(t) is 
P (exactly k policy decisions in (0, t)) = Fk(t) – Fk+1(t) 
with F0(t) = 1

It may happen that successive shocks become 
increasingly effective in causing damage, even though 
they are independent. This means that Vk(t), the 
distribution function of the kth damage is decreasing in 
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k = 1, 2, ... for each t. It is also known from renewal process that 

0

( ) ( ) ( )k i
k

P T t V t P X Y
∞

=

> = <∑
L(t) = 1– S(t)

Taking Laplace Transformation of life time L(t), We get,
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On simplification we get,
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Numerical Examples

On the basis of the numerical illustration of the 
following conclusions regarding expected time and 
variance consequent to the changes in the different 
parameter can be observed in fig.1 to fig.5.

Table 1: Variation in E (T) and V (T) for changes in σ1 and

µ1 = 1.75, µ2 = 1.0, σ2 = 1.5, η = 0.5
σ

1
E(T) V(T)

1.0 3.8323 13.0934
1.2 3.7054 12.3845
1.4 2.9453 10.6253
1.6 2.0967 8.3481
1.8 1.9831 6.3271

Fig.1: Variation in E (T) and V (T) for Changes in σ1

Table 2: Variation in E (T) and V (T) for changes in σ1 and

µ1 = 1.75, µ2 = 1.0, σ2 = 1.2, η = 0.5
σ

2
E(T) V(T)

0.5 4.6752 23.0934
1.0 3.9790 22.3389
1.5 3.2453 16.7545
2.0 2.7967 14.247
2.5 1.9831 12.3621

Fig.2: Variation in E (T) and V (T) for Changes in σ2

Table 3: Variation in E (T) and V (T) for changes in and µ1

σ1 = 1.2, µ2 = 1.0, σ2 = 1.5, η = 0.5
µ1 E(T) V(T)
1.0 2.6210 6.3462
1. 5 2.9853 7.0920
2.0 3.8093 7.9823
2.5 4.8325 8.8250
3.0 8.3420 9.5780
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Fig.3: Variation in E (T) and V (T) for Changes in µ1

Table 4: Variation in E (T) and V (T) for changes in µ2 and 

µ1 = 1.75, σ1 = 1.2, σ2 = 1.5, η = 0.5
µ2 E(T) V(T)

0.2 8.3468 13.2150
0.4 9.0253 13.4357
0.6 10.3216 14.0214
0.8 10.9047 14.9830
1.0 11.2173 15.6374

Fig.4: Variation in E (T) and V (T) for Changes in µ2

Table 5: Variation in E (T) and V (T) for changes in η and

µ1 = 1.75, µ2 = 1.0, σ2 = 1.5, σ1 = 1.2
η E(T) V(T)
1 2.9835 3.6589
2 2.0925 3.0725
3 1.4638 2.7610
4 0.6752 1.7458
5 0.2478 0.8735

Fig.5: Variation in E (T) and V (T) for Changes in η

CONCLUSION

It is observed that from table 1 and table 2 the parameter 
denoting the antigenic diversity threshold  σ1 and σ2 
increases and the threshold parameter µ1, µ2 are kept 
fixed, the simulated results shows that as the inter arrival 
time follows exponential distribution η = 0.5 take the 
value the expected time to cross the antigenic diversity 
threshold decreases and variance also decreases which 
is depicted in fig.1 and fig.2. This is due to fact that the 
antigenic diversity threshold increases expected time 
to cross the antigenic diversity threshold is decreases. 

From table 3 and table 4 it is observed that the 
threshold parameter µ1 and µ2 and the parameter of the 
antigenic diversity threshold σ1 and σ2 are kept fixed, 
the simulated results shows that as the inter arrival 
time follows exponential distribution η = 0.5 take the 
value the expected time to cross the antigenic diversity 
threshold increases and variance also increases which 
is depicted in fig.3 and fig.4. It is value of η which is 
parameter of the distribution of the inter arrival times 
between contacts increases then the expected time 
and variance time also decreases, which is means 
that the contacts are more frequent and hence the 
seroconversion occurs earlier and hence both expected 
time and variance time decreases.

To analyze HIV/AIDS epidemiological data, 
many parametric distributions have been assumed 
for the HIV infection and seroconversion without due 
regard to the dynamics of the HIV epidemic and the 
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biological and clinical features of the HIV. Results 
of practical utility can be achieved by collecting real 
life data by assuming appropriate distributions and 
test for the goodness of fit can be used to validate the 
model. The major use of mathematical models of the 
transmission dynamics of HIV at present is to focus 
attention on the epidemiological parameters that need 
to be measured to predict future trends and to help to 
assess how different methods of control will influence 
the incidence of AIDS.
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